Skip to main content
Skip to main content

Biotechnology FAQs


Biotechnology Frequently Asked Questions (FAQs)

1. What is Agricultural Biotechnology?

Agricultural biotechnology is a range of tools, including traditional breeding techniques, that alter living organisms, or parts of organisms, to make or modify products; improve plants or animals; or develop microorganisms for specific agricultural uses. Modern biotechnology today includes the tools of genetic engineering.

2. How is Agricultural Biotechnology being used?

Biotechnology provides farmers with tools that can make production cheaper and more manageable. For example, some biotechnology crops can be engineered to tolerate specific herbicides, which make weed control simpler and more efficient. Other crops have been engineered to be resistant to specific plant diseases and insect pests, which can make pest control more reliable and effective, and/or can decrease the use of synthetic pesticides. These crop production options can help countries keep pace with demands for food while reducing production costs. A number of biotechnology-derived crops that have been deregulated by the USDA and reviewed for food safety by the Food and Drug Administration (FDA) and/or the Environmental Protection Agency (EPA) have been adopted by growers.

Many other types of crops are now in the research and development stages. While it is not possible to know exactly which will come to fruition, certainly biotechnology will have highly varied uses for agriculture in the future. Advances in biotechnology may provide consumers with foods that are nutritionally-enriched or longer-lasting, or that contain lower levels of certain naturally occurring toxicants present in some food plants. Developers are using biotechnology to try to reduce saturated fats in cooking oils, reduce allergens in foods, and increase disease-fighting nutrients in foods. They are also researching ways to use genetically engineered crops in the production of new medicines, which may lead to a new plant-made pharmaceutical industry that could reduce the costs of production using a sustainable resource.

Genetically engineered plants are also being developed for a purpose known as phytoremediation in which the plants detoxify pollutants in the soil or absorb and accumulate polluting substances out of the soil so that the plants may be harvested and disposed of safely. In either case the result is improved soil quality at a polluted site. Biotechnology may also be used to conserve natural resources, enable animals to more effectively use nutrients present in feed, decrease nutrient runoff into rivers and bays, and help meet the increasing world food and land demands. Researchers are at work to produce hardier crops that will flourish in even the harshest environments and that will require less fuel, labor, fertilizer, and water, helping to decrease the pressures on land and wildlife habitats.

In addition to genetically engineered crops, biotechnology has helped make other improvements in agriculture not involving plants. Examples of such advances include making antibiotic production more efficient through microbial fermentation and producing new animal vaccines through genetic engineering for diseases such as foot and mouth disease and rabies.

3. What are the benefits of Agricultural Biotechnology?

The application of biotechnology in agriculture has resulted in benefits to farmers, producers, and consumers. Biotechnology has helped to make both insect pest control and weed management safer and easier while safeguarding crops against disease.

For example, genetically engineered insect-resistant cotton has allowed for a significant reduction in the use of persistent, synthetic pesticides that may contaminate groundwater and the environment.

In terms of improved weed control, herbicide-tolerant soybeans, cotton, and corn enable the use of reduced-risk herbicides that break down more quickly in soil and are non-toxic to wildlife and humans. Herbicide-tolerant crops are particularly compatible with no-till or reduced tillage agriculture systems that help preserve topsoil from erosion.

Agricultural biotechnology has been used to protect crops from devastating diseases. The papaya ringspot virus threatened to derail the Hawaiian papaya industry until papayas resistant to the disease were developed through genetic engineering. This saved the U.S. papaya industry. Research on potatoes, squash, tomatoes, and other crops continues in a similar manner to provide resistance to viral diseases that otherwise are very difficult to control.

Biotech crops can make farming more profitable by increasing crop quality and may in some cases increase yields. The use of some of these crops can simplify work and improve safety for farmers. This allows farmers to spend less of their time managing their crops and more time on other profitable activities.

Biotech crops may provide enhanced quality traits such as increased levels of beta-carotene in rice to aid in reducing vitamin A deficiencies and improved oil compositions in canola, soybean, and corn. Crops with the ability to grow in salty soils or better withstand drought conditions are also in the works and the first such products are just entering the marketplace. Such innovations may be increasingly important in adapting to or in some cases helping to mitigate the effects of climate change.

The tools of agricultural biotechnology have been invaluable for researchers in helping to understand the basic biology of living organisms. For example, scientists have identified the complete genetic structure of several strains of Listeria and Campylobacter, the bacteria often responsible for major outbreaks of food-borne illness in people. This genetic information is providing a wealth of opportunities that help researchers improve the safety of our food supply. The tools of biotechnology have "unlocked doors" and are also helping in the development of improved animal and plant varieties, both those produced by conventional means as well as those produced through genetic engineering.

4. What are the safety considerations with Agricultural Biotechnology?

Breeders have been evaluating new products developed through agricultural biotechnology for centuries. In addition to these efforts, the United States Department of Agriculture (USDA), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA) work to ensure that crops produced through genetic engineering for commercial use are properly tested and studied to make sure they pose no significant risk to consumers or the environment.

Crops produced through genetic engineering are the only ones formally reviewed to assess the potential for transfer of novel traits to wild relatives. When new traits are genetically engineered into a crop, the new plants are evaluated to ensure that they do not have characteristics of weeds. Where biotech crops are grown in proximity to related plants, the potential for the two plants to exchange traits via pollen must be evaluated before release. Crop plants of all kinds can exchange traits with their close wild relatives (which may be weeds or wildflowers) when they are in proximity. In the case of biotech-derived crops, the EPA and USDA perform risk assessments to evaluate this possibility and minimize potential harmful consequences, if any.

Other potential risks considered in the assessment of genetically engineered organisms include environmental effects on birds, mammals, insects, worms, and other organisms, especially in the case of insect or disease resistance traits. This is why the USDA's Animal and Plant Health Inspection Service (APHIS) and the EPA review environmental impacts of such pest-resistant biotechnology derived crops prior to approval of field-testing and commercial release. Testing on many types of organisms such as honeybees, other beneficial insects, earthworms, and fish is performed to ensure that there are no unintended consequences associated with these crops.

With respect to food safety, when new traits introduced to biotech-derived plants are examined by the EPA and the FDA, the proteins produced by these traits are studied for their potential toxicity and potential to cause an allergic response. Tests designed to examine the heat and digestive stability of these proteins, as well as their similarity to known allergenic proteins, are completed prior to entry into the food or feed supply. To put these considerations in perspective, it is useful to note that while the particular biotech traits being used are often new to crops in that they often do not come from plants (many are from bacteria and viruses), the same basic types of traits often can be found naturally in most plants. These basic traits, like insect and disease resistance, have allowed plants to survive and evolve over time.

5. How widely used are biotechnology crops?

According to the USDA's National Agricultural Statistics Service (NASS), biotechnology plantings as a percentage of total crop plantings in the United States in 2012 were about 88 percent for corn, 94 percent for cotton, and 93 percent for soybeans. NASS conducts an agricultural survey in all states in June of each year. The report issued from the survey contains a section specific to the major biotechnology derived field crops and provides additional detail on biotechnology plantings. The most recent report may be viewed at the following website: www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx

For a summary of these data, see the USDA Economic Research Service data feature at: www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx

The USDA does not maintain data on international usage of genetically engineered crops. The independent International Service for the Acquisition of Agri-biotech Applications (ISAAA), a not-for-profit organization, estimates that the global area of biotech crops for 2012 was 170.3 million hectares, grown by 17.3 million farmers in 28 countries, with an average annual growth in area cultivated of around 6 percent. More than 90 percent of farmers growing biotech crops are resource-poor farmers in developing countries. ISAAA reports various statistics on the global adoption and plantings of biotechnology derived crops. The ISAAA website is www.isaaa.org

6. What are the roles of government in agricultural biotechnology?

Please note: These descriptions are not a complete or thorough review of all the activities of these agencies with respect to agricultural biotechnology and are intended as general introductory materials only. For additional information please see the relevant agency websites.

Regulatory

The Federal Government developed a Coordinated Framework for the Regulation of Biotechnology in 1986 to provide for the regulatory oversight of organisms derived through genetic engineering. The three principal agencies that have provided primary guidance on the experimental testing, approval, and eventual commercial release of these organisms to date are the USDA's Animal and Plant Health Inspection Service (APHIS), the Environmental Protection Agency (EPA), and the Department of Health and Human Services' Food and Drug Administration (FDA). The approach taken in the Coordinated Framework is grounded in the judgment of the National Academy of Sciences that the potential risks associated with these organisms fall into the same general categories as those created by traditionally bred organisms.

Products are regulated according to their intended use, with some products being regulated under more than one agency. All government regulatory agencies have a responsibility to ensure that the implementation of regulatory decisions, including approval of field tests and eventual deregulation of approved biotech crops, does not adversely impact human health or the environment.

The Animal and Plant Health Inspection Service (APHIS) is responsible for protecting U.S. agriculture from pests and diseases. APHIS regulations provide procedures for obtaining a permit or for providing notification prior to "introducing" (the act of introducing includes any movement into or through the U.S., or release into the environment outside an area of physical confinement) a regulated genetically engineered organism in the U.S.

For more information on the regulatory responsibilities of the FDA, the EPA and APHIS visit usbiotechnologyregulation.mrp.usda.gov.

AskUSDA

One central entry point for you to access information and help from USDA.