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Introduction 
This report provides a summary of the methods that were used in an analysis of feedstock 
production for sustainable biofuels that was conducted by Colorado State University 
(CSU). For each biofuel feedstock—corn, soybean and sorghum—CSU estimated 
greenhouse gas (GHG) emissions for a baseline scenario developed from the Inventory of 
U.S. Greenhouse Gas Emissions and Sinks (US GHG Inventory), and scenarios associated 
with adoption of climate smart practices. The analysis includes adoption of single climate 
smart practices as well as stacking multiple practices for a total of 23 scenarios for each 
feedstock.   

Baseline 
The baseline scenario used in this analysis utilizes the model, methods and data inputs 
used in the US GHG Inventory. The DayCent model is used to simulate baselines for soil 
organic carbon stock (SOC) changes and soil nitrous oxide (N2O) emissions for U.S. 
agricultural lands with corn, soybean and sorghum production using the U.S. Department 
of Agriculture’s 2017 National Resources Inventory (NRI) (USDA-NRCS 2020). The model is 
initialized in three steps. In the first step, the model is run to a steady state condition (e.g., 
equilibrium) under native vegetation, historical climate data and the soil characteristics for 
the NRI survey locations. In the second step, the model simulates the expansion of 
agriculture following European settlement to the beginning of the NRI survey in 1979.  This 
step captures the loss of soil C and N following conversion of native vegetation to cropland 
and includes varying time periods of land conversion depending on historical settlement 
patterns starting in the 1700s. In the third step, the model simulates the cropping histories 
in the NRI survey from 1979 to 2017, which have been extended through 2020 using the 
USDA-NASS Crop Data Layer (CDL) (USDA-NASS 2021).  

CSU simulated every NRI survey location with at least one of the biofuel crops (corn, 
soybean, and sorghum) in the most recent five years of available crop history (2016-2020). 
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The baseline projection replicated this five-year rotation for 30 years. CSU excluded NRI 
survey locations with recent grass-to-cropland conversions in the previous 20 years (2000 
or later) because land use change has much larger effects on trends in SOC stocks and, to 
a lesser extent, soil N2O emissions, compared to changes in management practices. By 
excluding these points CSU was able to ensure that GHG emissions were driven by 
management effects rather than the effects of land use change. In addition, lands enrolled 
in the Conservation Reserve Program were excluded from the analysis since they are not 
actively used for crop production. 

The baseline scenario uses the same cropland management data that are used in the US 
GHG Inventory. These management data capture the current management practices in US 
farmland, which includes a combination of conventional and conservation practices. 
Management data are drawn from several sources in addition to the NRI data. The USDA-
NRCS Conservation Effects and Assessment Project (CEAP) provided spatial data on 
mineral fertilization, manure amendments, cover crop usage, as well as planting and 
harvest dates (USDA-NRCS 2022; USDA-NRCS 2018; USDA-NRCS 2012)1. Fertilizer data 
were also used from Agricultural Resource Management Surveys (ARMS) at the state scale 
(USDA-ERS 2020). Tillage and cover crop data were also informed by the OpTIS Data 
Product2, which is derived from remote sensing imagery (Hagen et al. 2020). Cover crop 
data are also utilized from the USDA Census of Agriculture at the state scale (USDA-NASS 
2012, 2017). See the US GHG Inventory report (US-EPA 2024) for more information about 
the historical management data that were used to create the baseline.  

CSU made several assumptions in the baseline that are listed below. 

• Cover crops were not planted before or after hay or pasture crops except when 
present on the first year of the baseline sequence where they were carried through 
the 30-year projection, and the fifth year could have been hay or pasture.     

• Tillage was classified at the NRI point scale as a management system based on the 
US GHG Inventory data that is statistically imputed based on OpTIS and CEAP 
survey data using machine learning methods (US-EPA 2024). All crops in a rotation 
received the same tillage practice (i.e., no-till system had no-till in each year). 
Consequently, there is no intermittent tillage in the baseline. The exception was hay 
and pasture in rotation with annual crops, in which hay and pasture were not tilled in 
years following establishment.  

• Fertilizer rates were based on CEAP and ARMS data as statistically imputed for 
2016-2020 in the US GHG Inventory (US-EPA 2024). The CEAP data were collected 

 
1 CEAP surveys are conducted at a subsample of NRI locations and collect detailed information on farm 
management practices. 
2 OpTIS data on tillage practices provided by Regrow Agriculture, Inc. 
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through surveys conducted on a sub-sample of the NRI point locations and were 
used to infer rates on individual fields. The ARMS data provided state-level fertilizer 
rates over two decades that were used to infer trends over time. Fertilizer sales data 
were used to constrain the total application of mineral fertilizer at the state scale 
(US-EPA 2024, Brakebill and Gronberg 2017, AAPFCO 2013 – 2022). All fertilizer was 
assumed to be 80%/20% ammonium/nitrate. There were insufficient data to inform 
the timing when the last US GHG Inventory was compiled (US-EPA 2024). All 
fertilizer was applied at the time of planting except for corn and grass hay which 
received split applications. Corn received 25% at planting and 75% 40 days after 
planting, while grass hay received 50% at planting and 50% in June.          

Using the US GHG Inventory baseline for the forward projection captures the current 
mixture of conventional and conservation practices. This approach limits over-estimation 
of SOC gains in the management scenarios, which could occur if we assumed that all 
lands were under conventional management practices. 

The three biofuel feedstocks (corn, soybeans, sorghum) were categorized into ten rotation 
types based on the five-year crop rotation sequences from the NRI survey (2016-2020) in 
order to differentiate generalized rotation effects on SOC and N2O emissions (Table 1). The 
influence of changing practices in each rotation was simulated at the NRI survey points 
and then aggregated to Major Land Resource Areas (MLRA) for assessing sustainability 
metrics associated with the SAF tax credit program.  Rotation types include: 

• Continuous corn (CC) with corn in the last five years of the NRI history;  
• Continuous soybeans (SS) with soybeans in the last five years of the NRI history; 
• Corn and soybeans (CS) with any combination of corn and soybeans in the last five 

years of the NRI history; 
• Corn and hay/pasture (CHP) with at least one year of corn and two years of hay or 

pasture (grass, alfalfa, etc.) in the last five years of the NRI history; 
• Soybeans and hay/pasture (SHP) with at least one year of soybeans and two years of 

hay or pasture (grass hay, alfalfa, etc.) in the last five years of the NRI history; 
• Corn, soybeans and hay/pasture (CSHP) with at least one year of soybeans, one 

year of corn, and two years of hay or pasture (grass hay, alfalfa, etc.) in the last five 
years of the NRI history; 

• Corn and other crops in rotation (CO) with a year or more of corn in the last five 
years of the NRI history; 

• Soybeans and other crops in rotation (SO) with a year or more of soybeans in the 
last five years of the NRI history;   

• Continuous Sorghum (SGSG) with sorghum in the last five years of the NRI history;  
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• Sorghum and other crops in rotation (SGO) with sorghum in at least one of the last 
five years of the NRI history.  

Table 1.  Crop rotations in the analysis where crop abbreviations are corn (C), soybeans (S), 
sorghum (SG), hay/pasture (HP), and other crops (O). 

Rotation  Abbreviation 

Corn-soybeans CS 
Continuous corn CC 
Continuous soybeans SS 
Corn and hay/pasture CHP 
Soybeans and hay/pasture CHP 
Corn-soybeans and 
hay/pasture 

CSHP 

Corn and other crops CO 
Soybeans and other crops SO 
Continuous Sorghum  SG 
Sorghum and other crops SGO 

 

Some rotations are non-exclusive, so the same NRI survey point may be evaluated for 
multiple crop rotation types. For example, points with both soybeans and sorghum in 
rotation are defined as both Soybean Other and Sorghum Other, and that NRI survey point 
would be used for assessing scenario effects for both rotation types3.   

Weather data: CSU replicated the most recent eight years of weather data from PRISM 
(PRISM Climate Group 2022); this accounts for the timing of leap years and provides an 
offset with the crop rotation length to reduce crop year interactions that could produce 
artifacts in the projection. PRISM provide daily weather data on a 4km grid with daily 
minimum and maximum temperatures, in addition to daily precipitation, which are used in 
the DayCent model simulations. The time span was limited to 8 years to represent recent 
climatic conditions since the climate has been changing (IPCC 2023). CSU did not 
simulate future climate effects, which is still challenging to forecast for climate modelers 
with high uncertainty based on variation in projections from global circulation models.  A 
future improvement is to incorporate climate change projections in the framework to better 
address the interaction among crop choices, management and future weather patterns. 

 
3 This application is not double-counting effects, but rather assessing average impacts for individual crops 
that may be used for SAF.  Total changes are not assessed in this analysis, such as the total amount of SOC 
stock change or total N2O emission reductions, in which double-counting would be problematic.    
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Soils data: CSU used the soils data from the US GHG Inventory. Soil profiles and 
associated edaphic characteristics are from the NRCS gSSURGO database (Soil Survey 
Staff 2020). These data include bulk density, pH, and soil texture, which are needed as 
input for the DayCent model simulations. 

Single Practice Scenarios   
Practice scenarios were simulated with the DayCent model to evaluate the impact of 
practice change with including cover crop adoption, tillage, and nutrient management. All 
scenarios have the same crop sequences, management events and timing, as well as 
weather and soils data as the baseline, except for specific management interventions 
detailed below. The climate smart practices that were evaluated include practices 
associated with cover crops, tillage type, and nutrient management (Table 2). 

Table 2. Single practice scenarios in the analysis. 

Practice Type  Count Scenario  Abbreviation  
Cover Crop  1 Winter rye cover crop  ccR 
Tillage4 2 Reduced tillage  RT 

3 No-tillage with intermittent reduced tillage  NTRT 
4 No-tillage with intermittent intensive tillage  NTIT  

Nutrient 
management  

5 Nitrification inhibitors  NI 
6 Reduced fertilizer rates by 10% and split 

applications  
RF10split  

 

Descriptions of the assumptions used to model each of climate smart practice scenarios 
are provided in detail below.   

Cover crop scenario (ccR):   

• Cover crops were simulated as winter rye 
• Cover crops were simulated every year except in years that have small winter grains 

(e.g., winter wheat) or perennial hay or pasture. 
• Cover crop termination was simulated as a chemical/herbicide termination without 

biomass removal and soil disturbance. Tillage termination was evaluated in a 

 
4 Full tillage is defined as multiple tillage operations every year, including significant soil inversion (e.g., 
plowing, deep disking) and low surface residue coverage. No-till is defined as not disturbing the soil except 
through the use of fertilizer and seed drills and where no-till is applied to all crops in the rotation. The 
remainder of the cultivated area is classified as reduced tillage, including mulch tillage, strip tillage and ridge 
tillage (CTIC 2004).  
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previous study and resulted in decreases or no change in SOC stocks (Ogle et al., 
2023) and thus was not included in this analysis.  

• Planting and harvest dates were based on US GHG Inventory data for cover crops 
(US-EPA 2024).  

• Cover crops did not receive any fertilizer (US-EPA 2024).  

Tillage scenarios:  

CSU simulated scenarios with conversion to continuous reduced tillage (RT), no-till with 
intermittent reduced tillage (NTRT) and no-till with intermittent intensive tillage5 (NTIT) as 
noted below.  

• Reduced tillage (RT): All NRI survey points with intensive tillage (IT) in the baseline 
were converted to RT.   

• Intermittent no-till with reduced till (NTRT): All NRI points in the baseline were 
converted to NT with one year of RT in the fifth year. If the fifth year occurred on a 
hay/pasture crop, the reduced tillage event was moved to the next non-perennial 
crop in the rotation.  

• Intermittent no-till with intensive till (NTIT): All NRI points in the baseline were 
converted to NT with one year of intensive tillage in the fifth year.  If the fifth year 
occurred on a hay/pasture crop, the intensive tillage event was moved to the next 
non-perennial (i.e., annual) crop in the rotation because tillage was assumed to not 
occur after the first year of planting hay or pasture until an annual crop is planted 
again.  

Nutrient management scenarios: 

CSU simulated nutrient management scenarios by applying enhanced efficiency fertilizers 
and split application timing paired with decreased fertilizer application rates, as described 
below. Note that for NRI points where only manure was applied, there were no changes in 
nutrient management applied. For NRI survey locations where both manure and synthetic 
fertilizer are applied, only the synthetic fertilizer applications were adjusted (either through 
application of nitrification inhibitors or changes in rate and timing in the case of split 
application).  

• Nitrification inhibitor (NI): All fertilizer was applied with a nitrification inhibitor. NI 
fertilizer was assumed to be 80% ammonium and 20% nitrate. 

 
5 Farmers are incorporating occasional tillage in no-till systems to address problems with weed resistance 
(Lu et al. 2022), and possible other issues such as compaction of the soil. The specific tillage implements can 
vary so both a less intensive reduced tillage implement and more intensive full tillage implement were 
simulated to capture the variation. 
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• Split application with 10% reduced fertilizer (RF10 split): All fertilizer rates were 
reduced by 10%, and their application was split with 25% applied at the time of 
planting and 75% applied 5 weeks later for corn. Note that the split fertilizer 
application was not changed for hay. A 10% reduction in fertilizer rate was simulated 
because there is little to no yield loss with this level of fertilizer reduction. 

Stacked practices scenario definition and assumptions   
CSU evaluated the full set of stacked practices by simulating the adoption of two and three 
practices by combining cover crops, tillage, and nutrient management types. Examples of 
two stacked practices include the adoption of cover crops (ccR) and no-till with reduced till 
(NTRT) for the NTRT_ccR scenario, and nitrification inhibitors (NI) and cover crops (ccR) for 
the NI_ccR scenario. Three stacked practices include scenarios such as combining cover 
crops, no-till with reduced till, and nitrification inhibitor fertilizer applications, as 
NTRT_NI_ccR. The complete list of stacked practices with two and three combinations are 
listed below. There are no additional assumptions or modifications from the single practice 
definitions.    

Two Practices 

1. NI_ccR 
2. RT_ccR 
3. RT_NI 
4. NTRT_ccR 
5. NTRT_NI 
6. NTIT_ccR 
7. NTIT_NI 
8. RF10split_ccR 
9. RF10split_RT 
10. RF10split_NTRT 
11. RF10split_NTIT 

Three Practices 
12. RT_NI_ccR 
13. NTRT_NI_ccR 
14. NTIT_NI_ccR 
15. RF10split_ccR_RT 
16. RF10split_ccR_NTIT 
17. RF10split_ccR_NTRT 
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Aggregation and Outputs  
For each rotation type and scenario, simulated values and supporting scenario data are 
aggregated to the MLRA level using NRI survey area weights. The results were aggregated to 
the MLRA to maintain regional variability and statistical relevance while also adhering to 
data disclosure restrictions. Outputs are aggregated by rotation (across all years) or by 
rotation and crop type (across years with the crop of interest) for each scenario. The 
reported outputs include:  

1) Across all rotations by MLRA: 

• Percentage of the area each crop rotation relative to the total simulated area in each 
MLRA 

 
2) Within each rotation by MLRA and scenario:  

• Average annual area proportion of the crop and any "Other" crop/silage  
• Average annual area proportion (0:1) with a cover crop by year  
• Average annual area proportion with a cover crop in any year  
• Average number of years with a cover crop  
• Average annual delta SOC      
• Average annual area proportion of full tillage (IT)    
• Average annual area proportion of reduced tillage (RT)   
• Average annual area proportion of no-tillage (NT)   
• Average annual area proportion receiving manure6   
• Average annual area proportion receiving manure in any year  
• Average number of years receiving manure   

    
3) Within each rotation and crop by MLRA and scenario:  

• Average annual direct N2O flux in kg/ha       
• Average annual indirect N2O flux in kg/ha 
• Average annual C in grain (yield) in gC/m2   
• Average annual aboveground biomass in gC/m2  

 
6 Manure amendments do occur in the baseline as represented in the Inventory of US Greenhouse Gas 
Emissions and Sinks (EPA 2024), but amendments were not changed between the baseline and practice 
scenarios.  Therefore, NRI survey points that had been amended in the baseline were also amended in the 
scenarios during the same years in the rotation sequences. 
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• Average annual belowground biomass in gC/m2  
• Average annual total biomass in gC/m2     
• The proportion of the total nitrogen available applied as fertilizer     
• The proportion of the crop's total biomass to the rotation's total biomass  
• Average annual total nitrogen sources in g N/m2    
• Average annual total N fertilizer in gN/m2     
• Average annual litter N in gN/m2     
• Average annual total N in manure for NRI survey points receiving manure in gN/m2  
• Average annual total C in manure for NRI survey points receiving manure in gC/m2  
• Average annual total N in manure across all NRI survey points in gN/m2   
• Average annual total C in manure across all NRI survey points in gC/m2  

  

Modeling framework 
The DayCent ecosystem model (Parton et al. 1998, 2001; Del Grosso et al. 2001, 2011, 
2022) has been used in this analysis. DayCent simulates biogeochemical carbon and 
nitrogen cycles between the atmosphere, vegetation, and soil, using a broad suite of 
environmental drivers. These drivers include soil characteristics, weather patterns, crop 
and forage characteristics, and management practices. The DayCent model utilizes the soil 
carbon modeling framework developed in the Century model (Parton et al. 1987, 1988, 
1994), but has been refined to simulate dynamics at a daily time-step. Carbon and nitrogen 
dynamics are linked in plant-soil systems through biogeochemical processes of microbial 
decomposition and plant production. Nutrient supply is a function of external nutrient 
additions as well as litter and soil organic matter (SOM) decomposition rates. Increasing 
decomposition can lead to a reduction in soil organic carbon stocks due to microbial 
decomposition, and greater N2O emissions by enhancing mineral nitrogen availability in 
soils. DayCent has been tested and applied in many studies, but the most recent 
calibration associated with this version utilized Bayesian methods for soil C and N2O 
emissions (US-EPA 2024; Gurung et al. 2020, 2021). 

DayCent is used to approximate initial values of C and N in the plant and soil system for the 
biofuels analysis using the US GHG Inventory framework and NRI survey data. First, the 
DayCent model is used to establish the initial conditions and carbon stocks for 1979, 
which is the first year of the NRI survey. Second, DayCent is used to simulate land-use and 
management histories recorded in the 2017 NRI histories (USDA-NRCS 2020) extended 
through 2020 using USDA-NASS Crop Data Layer (CDL) (USDA-NASS 2021). Using these 
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histories to establish initial conditions ensures that forward projection for the sustainable 
biofuels analysis is consistent with the US GHG Inventory for agricultural lands (US-EPA 
2024). The forward simulations for the 30-year projection are described in sections above 
using the last 5 years of the NRI histories, which are replicated 6 times in this analysis. 

Evaluating uncertainty is an integral part of the analysis and key uncertainties include 
uncertainty in the management activity data inputs (input uncertainty) and uncertainty in 
the model formulation and parameterization (model structural uncertainty) (Ogle et al. 
2010; Del Grosso et al. 2010, Ogle et al. 2023). Input uncertainty is based on the six 
imputations underlying the management data product that combines data from the CEAP 
survey, ARMS, OpTIS data product, Census of Agriculture and CTIC survey data. CSU 
randomly selected imputations for each iteration in a Monte Carlo analysis to propagate 
this error. 

Model structural uncertainty is the estimation error associated with model formulation and 
parameterization. This component is the largest source of uncertainty in this model-based 
analysis, accounting for more than 80 percent of the overall uncertainty in the final 
estimates (Ogle et al. 2010; Del Grosso et al. 2010). An empirically based procedure is 
applied to develop a structural uncertainty estimator from the relationship between 
modeled results and field measurements from agricultural experiments using linear-mixed 
effect modeling techniques (Ogle et al. 2007). The modeled emissions are treated as a 
fixed effect in the statistical models along with other covariates that are significant based 
on the model fit in R, such as crop type, tillage practice and fertilization rates. The resulting 
relationships are used to make an adjustment to modeled values to address biases due to 
significant mismatches between the modeled and measured values (Figure 1). Random 
effects are included to capture the dependence in time series and data collected from the 
same site, which are needed to estimate appropriate standard deviations for parameter 
coefficients. The resulting mixed effect model is applied in the DayCent model framework 
using a Monte Carlo framework with 10,000 draws for parameter values in a joint 
probability distribution from the linear mixed-effect model.  In this step, DayCent output is 
adjusted for bias and a level of precision is quantified according to the statistical model 
relationships.  See US-EPA (2024) for more information about the DayCent modeling 
framework. 
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Figure 1. Relationship between DayCent model predictions and empirical observations of 
soil C stocks from 1406 observations from 69 long-term experiment sites and 145 NRI soil 
monitoring network sites (Spencer et al. 2011), and empirical observations of N2O 
emissions from 76 experimental sites with 857 observations. Appendix A includes 
publication references for the experiments. These figures are from US-EPA (2024). 
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