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Abstract. Honey bees are crucial pollinators for agricultural crops but are threatened by a
multitude of stressors including exposure to pesticides. Linking our understanding of how pes-
ticides affect individual bees to colony-level responses is challenging because colonies show
emergent properties based on complex internal processes and interactions among individual
bees. Agent-based models that simulate honey bee colony dynamics may be a tool for scaling
between individual and colony effects of a pesticide. The U.S. Environmental Protection
Agency (USEPA) and U.S. Department of Agriculture (USDA) are developing the Var-
roaPop + Pesticide model, which simulates the dynamics of honey bee colonies and how they
respond to multiple stressors, including weather, Varroa mites, and pesticides. To evaluate this
model, we used Approximate Bayesian Computation to fit field data from an empirical study
where honey bee colonies were fed the insecticide clothianidin. This allowed us to reproduce
colony feeding study data by simulating colony demography and mortality from ingestion of
contaminated food. We found that VarroaPop + Pesticide was able to fit general trends in col-
ony population size and structure and reproduce colony declines from increasing clothianidin
exposure. The model underestimated adverse effects at low exposure (36 µg/kg), however, and
overestimated recovery at the highest exposure level (140 µg/kg), for the adult and pupa end-
points, suggesting that mechanisms besides oral toxicity-induced mortality may have played a
role in colony declines. The VarroaPop + Pesticide model estimates an adult oral LD50 of
18.9 ng/bee (95% CI 10.1–32.6) based on the simulated feeding study data, which falls just
above the 95% confidence intervals of values observed in laboratory toxicology studies on indi-
vidual bees. Overall, our results demonstrate a novel method for analyzing colony-level data
on pesticide effects on bees and making inferences on pesticide toxicity to individual bees.
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INTRODUCTION

Honey bees (Apis mellifera L.) provide essential polli-
nation services for many agricultural crops, but these
services are threatened by increasing colony losses in
North America and Europe in recent decades (Tyliana-
kis 2013, Potts et al. 2016). While multiple stressors (dis-
ease, nutrition, genetics, and chemicals) are implicated,
pesticides may be important contributors to these decli-
nes (National Honey Bee Health Stakeholder Confer-
ence Steering Committee 2012, Goulson et al. 2015)

because they can cause direct mortality to individual
bees, as well as a range of sublethal effects (Krupke et al.
2012, Siviter et al. 2018) and have frequently been found
in colonies (Mullin et al. 2010, Traynor et al. 2016, Tosi
et al. 2018). Linking the effects of pesticides on individ-
ual bees to whole-colony success or failure is challenging
because colonies are complex systems (i.e., superorgan-
isms) with emergent properties derived from internal
population dynamics and complex interactions among
individuals (Seeley 1995, Camazine et al. 2003, Godfray
et al. 2014). While it is possible to measure declines in
colony-level properties over time (e.g., number of adult
bees and cells of honey), it is difficult to observe effects
of pesticides inside hives at the individual bee level and
directly link individual-level and colony-level effects.

Manuscript received 26 June 2020; revised 19 February 2021;
accepted 16 April 2021. Corresponding Editor: Tiffany M.
Knight.

7 E-mail: minucci.jeffrey@epa.gov

Article e02442; page 1

Ecological Applications, 31(8), 2021, e02442
© 2021 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of Ecological Society of America. This article has been
contributed to by US Government employees and their work is in the public domain in the USA
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

https://orcid.org/0000-0001-5571-2599
https://orcid.org/0000-0001-5571-2599
https://orcid.org/0000-0001-5571-2599
info:doi/10.1002/eap.2442
mailto:
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feap.2442&domain=pdf&date_stamp=2021-09-05


Agent-based models that simulate internal colony popu-
lation dynamics in response to pesticide exposure may
allow inference on how pesticide effects on individual
bees scale up to colony growth and survival.
Many managed honey bee colonies are located in or

near agricultural areas, leading to exposure to pesticides
being applied to control crop pests (Mullin et al. 2010,
Tosi et al. 2018). Two primary routes of pesticide expo-
sure for honey bees have been identified: contact and
oral. Contact exposure with pesticides occurs when for-
aging bees are directly sprayed or when they land on foli-
age that has received direct spray or drift (Girolami
et al. 2012, Krupke et al. 2012). Oral exposure occurs
through ingestion of pollen or nectar derived from either
pesticide-treated agricultural crops (Girolami et al.
2009, Krupke et al. 2012) or from neighboring wild
plants contaminated through drift or transfer through
soil and subsequent root uptake (Krupke et al. 2012,
USEPA et al. 2014, Bonmatin et al. 2015, Botı́as et al.
2016, Mogren and Lundgren 2016). Furthermore, some
classes of pesticides are relatively stable in the environ-
ment, leading to soil contamination that can persist for
months or years after application (Goulson 2014, Jones
et al. 2014). Acute and chronic pesticide exposure to
honey bees can lead directly to bee mortality, or indi-
rectly via sublethal effects such as reduced foraging suc-
cess and flight ability (Henry et al. 2012, Fischer et al.
2014, Tosi et al. 2017, Morfin et al. 2019a), impaired
olfactory learning (Decourtye et al. 2005, Williamson
and Wright 2013, Siviter et al. 2018, Morfin et al. 2020),
and increased susceptibility to diseases (Alaux et al.
2010, Di Prisco et al. 2013, Doublet et al. 2015).
Over the past decade, regulatory agencies such as

the U.S. Environmental Protection Agency (USEPA)
and European Food Safety Authority (EFSA) have
developed guidance for risk assessors and stakeholders
on data needs for honey bee toxicity testing, as well
as how to evaluate of potential risk of pesticides to
bees (EFSA 2013, USEPA et al. 2014, Rortais et al.
2017). These efforts were partly a response to public
concern over significant losses of honey bee colonies
in the United States and Europe (National Research
Council 2007, Oldroyd 2007), and also due to devel-
opment of increasingly reliable laboratory toxicity
testing protocols for honey bees.
USEPA’s process for assessing risk to bees utilizes a

tiered approach that begins with acute and chronic test-
ing of individual adults and individual larvae, and in
higher tiers, considers exposures and effects to colonies.
In Tier I toxicity studies, individual larval or adult bees
are exposed to a single contact or oral dose (acute toxic-
ity studies) or repeated oral doses (chronic toxicity stud-
ies) of a given pesticide. These studies derive standard
toxicity endpoints based on apical endpoints (survival,
growth, or reproduction) that can be compared to esti-
mated environmental exposures. Acute exposure end-
points based on mortality are represented by median
lethal doses (LD50 values), while chronic exposure

toxicity endpoints are represented by Lowest Observed
Adverse Effect Concentrations (LOAECs) and No
Observed Adverse Effect Concentrations (NOAECs).
These values are compared to Estimated Environmental
Concentrations (EECs) for contact and oral exposures
of a given pesticide that are generated using the BeeREX
model (USEPA et al. 2014). These comparisons, repre-
sented by risk quotients (RQs), are then compared to the
Levels of Concern (LOCs) for acute and chronic toxicity,
0.4 and 1.0, respectively, which were established by the
USEPA to define whether there is a potential risk con-
cern for effects to individual bees (USEPA 2012).
Based on the results of Tier I studies, Tier II testing

may be conducted. Tier II studies involve comparison of
empirically based concentrations of pesticides in pollen
and nectar to results of controlled colony-level toxicity
studies (colonies are fed known concentrations of a pes-
ticide), as well as consideration of effects to colonies
exposed in semi-field conditions (tunnel or enclosure
studies). If there are risk concerns (adverse colony-level
effects at empirically observed concentrations of pesti-
cides) from the more controlled Tier II studies, full-field
(Tier III), colony studies may be needed (USEPA et al.
2014). Semi- and full-field studies evaluate pesticide toxi-
city at the colony-level, including potential measurement
of adverse effects on sublethal honey bee behavior such
as foraging activity, and quantification of toxicity effects
on honey bee brood and food production. Higher-tier
studies are considered more representative of real field
exposures by honey bee colonies, but interpretation of
their data can be confounded by interactions with other
environmental influences and stressors (e.g., disease,
nutrition, and parasites) and variability among colonies,
and they are logistically challenging and expensive to
conduct (USEPA et al. 2014). Models are therefore
being developed in the United States and EU to simulate
colony-level effects of pesticides to aid synthesis of
colony-level data, and to provide regulatory agencies
with additional evidence of whether higher tier (Tiers II
or III) studies may be informative.
The U.S. model under development is VarroaPop

+ Pesticide (hereafter, VarroaPop), an age-structured,
agent-based colony simulation model (Kuan et al.
2018). It was first developed to simulate colony
growth and development through time (BEEPOP;
DeGrandi-Hoffman et al. 1989), and subsequently
extended to include infestation by parasitic Varroa
mites (Varroa destructor; DeGrandi-Hoffman and
Curry 2005) and pesticide exposure (Kuan et al. 2018)
to determine their cumulative effects on colony
growth and survival. Pesticide contamination of pollen
and nectar can be calculated based on application
method, similarly to the Tier 1 BeeREX model, or
directly specified. Individual food consumption rates
for each age and caste of bees are used to scale up
exposure to the entire colony. Toxicity is applied to
each day-cohort, based on the logistic Hill equa-
tion with LD50 and slope parameters (Hill 1910).
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Here, we present a method for inferring individual-
level pesticide toxicity from colony-level field data,
employing the VarroaPop + Pesticide agent-based col-
ony model. We used data from a registrant-submitted
feeding study on clothianidin, a nitroguanidine-
substituted neonicotinoid insecticide, in which colonies
were dosed with spiked nectar of varying concentrations
over a five-week period. Because nectar contaminated
with the active ingredient was provided directly to colo-
nies, this study focuses only on dietary exposure routes.
We did not evaluate the effect of Varroa mites because
colonies were treated for Varroa and mite levels
remained relatively low throughout the study. We imple-
mented a Bayesian hierarchical model based on Var-
roaPop to explain dynamics of single colonies in the
feeding study. We then applied Approximate Bayesian
Computation (ABC) to fit our model to the empirical
data and inferred parameters describing individual toxi-
city in VarroaPop. We hypothesized that (1) VarroaPop
can explain general trends in colony population size
observed in the control colonies and (2) individual-level
oral toxicity is sufficient to explain colony declines
observed at high concentrations of clothianidin in the
feeding study.

METHODS

Colony feeding study design

A study on the effects of clothianidin on honey bee
colonies in field conditions took place between 17 June
2014 and 27 April 2015 in the Piedmont region of North
Carolina. Four Apis mellifera ligustica sister breeder
queens were purchased from a commercial bee supplier
(The Carolina Honey Bee Company, Travelers Rest,
South Carolina, USA) and used to generate queens for
the study colonies. Eighty-four colonies were divided
into 12 sites in low-agriculture areas of Guilford, Ran-
dolph, Alamance, and Chatham counties. According to
the USDA National Agricultural Statistics Service Cro-
pland Data Layer, 8% of the land cover within 5-mile
radii of the apiaries was agricultural (Louque 2016; 1
mile = 1.6 km). Colonies were assigned to one of six
treatment groups that received supplemental nectar feed-
ings spiked with clothianidin at 0, 10, 20, 40, 80, and
160 µg/L. Measured clothianidin concentrations in the
supplemental nectar were found to be slightly lower than
the nominal treatment levels, so we refer to the treat-
ments by the measured values, in units of µg/kg: 0, 10,
19, 36, 72, and 140 µg/kg. We also used these measured
values as the pesticide inputs to VarroaPop. Clothianidin
concentrations observed in crop nectar following foliar,
soil, and seed applications range from 4 to 3,400 µg/kg,
4 to 40 µg/kg, and 1 to 4 µg/kg, respectively, and repre-
sent a variety of locations, conditions, and crops
(USEPA 2017). However, the colony feeding study was
designed to cover a wide range of exposure levels to
determine the no observed adverse effect concentration

(NOAEC) and lowest observed adverse effect concentra-
tion (LOAEC) and was not intended to replicate a speci-
fic crop application scenario. Treatments were assigned
with a stratified random approach that standardized col-
ony size (number of adult bees) among the treatments.
Colonies were divided into 12 groups of 7, with the 7 lar-
gest colonies assigned to the one group, then the next 7
largest colonies, and so forth. Each group of colonies
was then randomly assigned to either a treatment level
(one per level per group) or the control (two per group).
In total, there were 24 replicate colonies for the 0 µg/kg
control and 12 replicates for each of the five treatment
levels. Supplemental nectar feeding occurred continu-
ously for 34 d from 26 June 2014 to 30 July 2014, with
clothianidin content prescribed by treatment level. In
addition to the supplied nectar, bees were allowed to for-
age naturally for pollen.
Colonies were checked for visible symptoms disease or

pests, such as Nosema, foulbrood, Varroa mites and
small hive beetles during each colony assessment, with
no observations reported. The number of mites per 100
bees and Nosema spores per bee were quantified before
nectar feedings began (18–23 June) and one week post-
feedings (5–11 August). No assays for other brood dis-
eases or pests were performed. All colonies were treated
for Varroa mites with an application of thymol in
September in accordance with typical apicultural prac-
tice for the region (Louque 2016).
The condition of each colony was assessed before nec-

tar feedings began (18–23 June), once during the feedings
(15–18 July), and 1, 5, and 11 weeks post-feeding (5–11
August, 8–12 September, and 14–22 October, respec-
tively). All colonies survived until the October assessment
period, however, two colonies from the 36 µg/kg treat-
ment group were removed from the study due to technical
errors. No colonies exhibited swarming behavior during
the study period. During each colony condition assess-
ment, hives were opened, and each frame was removed
and inspected. Area coverage was measured for adult
bees, larvae, pupae, eggs, honey, nectar, and pollen (bee
bread). Area measurements were then converted to indi-
vidual or cell counts, using density of adult bees (for
adults) or density of cells on the frame (for all other end-
points) empirically measured in the study. To parameter-
ize the initial nectar and pollen store parameters in
VarroaPop + Pesticide, we converted nectar and pollen
cell counts to weight, using cell depth of 12.5 mm, nectar
density of 1.13 g/mL (30% sucrose solution), and pollen
density of 1.45 g/mL (corn pollen, a major pollen source
for the study colonies; Aylor 2002). Data used in our
analysis (replicate-level means and standard deviations)
are publicly available (Louque 2016).

VarroaPop + Pesticide model

The complete structure and equations of VarroaPop
are described elsewhere (DeGrandi-Hoffman et al. 1989,
DeGrandi-Hoffman and Curry 2004, 2005, Kuan et al.
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2018); here, we provide a brief summary. VarroaPop is
an agent-based model that simulates colony dynamics,
based on queen egg-laying rate, development of workers
and drones, and activity patterns of foragers. These
dynamics are optionally modified by Varroa mite infes-
tation (not considered here), and oral and/or contact
exposure to pesticides. Queens are simulated as individ-
ual agents, with daily egg-laying rate and proportion of
eggs fertilized determined by weather, colony size,
worker population, photoperiod, and fecundity (queen
strength) (DeGrandi-Hoffman et al. 1989). All other
bees are simulated as day-cohort agents that age and
transition between life stages and consume pollen and/or
nectar based on age and caste (Rortais et al. 2005,
USEPA et al. 2014).
We focused our modeling on a time window spanning

just before nectar feeding treatments began until 11
weeks post-treatment. VarroaPop + Pesticide requires
daily weather data on temperature, precipitation, hours
of daylight, and wind speed for the simulation period to
determine potential foraging time. We used National
Oceanic and Atmospheric Administration (NOAA)
weather data gridded at 0.25° × 0.25° resolution and
centered at 35.875° N, 79.375° W near the center of the
feeding study area (Fry et al. 2016). Mean daily temper-
ature during the exposure period was 23.3°C, close to
the 15-yr average for this period of 23.9°C. Mean daily
precipitation was 0.24 cm/d, 33% lower than the 15-yr
mean of 0.36 cm/d. In the model, when weather is favor-
able (maximum temperature between 12°C and 43.3°C,
wind speed <21.1 m/s, daily rainfall <0.5 cm), foraging
honey bees collect pollen and nectar from an infinitely
large range area, based on a specified number of trips
per day. Resources collected in excess of daily consump-
tion are stored and potentially consumed later when
daily foraging does not meet colony food requirements.
Pesticide contamination of pollen and nectar can be cal-
culated based on application method and timing, or
directly specified (as in this study; Kuan et al. 2018).
Oral dose is calculated by multiplying age- and caste-
specific daily pollen and nectar consumption rates by
the concentration of pesticides present in each food
resource. Mortality due to ingestion of this contami-
nated pollen/nectar is calculated for larval and adult
age-cohorts, based on the dose consumed and a logistic
dose-response curve (parameterized by LD50 and slope;
Hill 1910, Kuan et al. 2018). Contact exposure to forag-
ing bees can also be simulated in pesticide foliar spray
scenarios, but is not considered in this study, which
included only dietary exposure.

Modeling the feeding study data using
VarroaPop + Pesticide

We defined a Bayesian hierarchical model, which
included the VarroaPop + Pesticide agent-based model,
to explain dynamics of single colonies in the feeding
study. We then used it to simulate the 84 colonies in the

feeding study and produce treatment by time point sum-
mary statistics that corresponded to observations in the
study. We modeled the population structure of an indi-
vidual colony i at a given time point t (yi,t) as

yi,t ¼ f ðyi,0, x, z, Initi, Ei, Stri, Li, tÞ (1)

Stri ∼NormalðμStr, σStrÞ

Li ∼NormalðμL, σLÞ

x j ∼Unifðaj , bjÞ for j¼ 1, 2, . . ., n

μStr,L ∼UnifðaμStr,L, bμStr,LÞ

σStr,L ∼UnifðaσStr,L, bσStr,LÞ

where f is the VarroaPop + Pesticide agent-based model;
yi,0 is initial population structure for colony i;, x is a vec-
tor of toxicity random variables; z is a vector of fixed
variables including weather conditions; Initi is a vector
of initial size, population structure, and food resources
for colony i; Ei is the clothianidin exposure level for col-
ony i; and Stri and Li are random variables for queen
strength (egg-laying rate) and forager life span, respec-
tively, for colony i. We considered Stri and Li to be ran-
dom variables drawn from a normal distribution shared
among all colonies in the study because they strongly
influence population dynamics and vary between colo-
nies (Kuan et al. 2018). Thus, our model uses these two
random variables to account for the variance among
replicate colonies in the feeding study. For the mean (μ)
and standard deviation (σ) hyperparameters of the nor-
mal distributions, we defined uniform hyperpriors with μ
bounded within [1, 5) for queen strength (equivalent to
1,000–3,000 eggs/d) and [4, 16) d for forager life span,
the full range of possible values in VarroaPop, and σ
within [0, 2) and [0, 3), respectively (Table 1). We also
defined prior probability of toxicity parameters x as a
uniform distribution spanning the range of plausible val-
ues (Table 1). Adult and larva oral LD50 was defined
within [0.1, 100) ng/bee, a considerably wider range than
that observed in laboratory studies (USEPA 2017).
Adult and larva dose-response curve slope was defined
within [1, 9) percent mortality per ng clothianidin, the
range defined in a previous sensitivity analysis of Var-
roaPop (Kuan et al. 2018). We then used Bayesian infer-
ence to estimate the joint posterior probability of
toxicity parameters x and hyperparameters μStr, σStr, μL,
and σL.
In addition to initial colony conditions, weather data,

and toxicity parameters, VarroaPop + Pesticide requires
parameterization of pollen and nectar foraging behavior
and consumption rates for each life stage. We treated
these as known constants shared among all colonies in
the feeding study (Appendix S1: Table S1). For pollen
and nectar consumption rates, we used the empirically
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derived values compiled in the USEPA Final Guidance
on Bee Risk Assessments document, taking the mean
when ranges were given (USEPA 2014). For the number
of nectar-gathering trips per day, we started with 10/d,
the mean value used by the USEPA Bee Risk Assess-
ment Framework document (USEPA 2012) and
increased this until nectar stores could be maintained in
VarroaPop for control treatment colonies. This resulted
in a final value of 17 trips/d, which is within the previ-
ously reported range for foraging honey bees (Winston
1987). Because pollen foraging occurs primarily during
the first half of the day, we set the number of pollen trips
to 8 trips/d, which is close to the previously reported
mean pollen foraging activity by honey bees (Klein et al.
2019).
To confirm that our model could fit the general popu-

lation structure of the control colonies, we did an initial
VarroaPop + Pesticide run with the mean initial condi-
tions of the control and previously described parameters.
We observed that, although the adult population count
estimated by the model was in agreement with empirical
data from the study, there were more pupae, larvae and
eggs in the empirical data than was predicted by Var-
roaPop, suggesting unexplained mortality as pupae tran-
sition to adults. We therefore reduced the pupa-to-adult
transition survival rate in the model from 100% to 60%
(Appendix S1: Table S1), the level at which the predicted
population structure roughly matched the control data.

Model inference using Approximate Bayesian
Computation with sequential Monte Carlo

We used Approximate Bayesian Computation (ABC)
to infer probability distributions of toxicity parameters
in our model, given the empirical feeding study data.
ABC is a computational method for approximating the
joint posterior probability distribution of a model by
comparing its outcome to empirical data (either with
individual data points or summary statistics) (Beaumont
2010, Csilléry et al. 2010). We compared the mean and
standard deviation of empirical and estimated colony
endpoints (number of adults, pupae, larvae, and eggs)
for each treatment group by time combination.

Parameter sets (particles) are either accepted or rejected
based on whether their distance from the real data, as
calculated by a distance function on summary statistics
(in this case the sum of absolute deviation), is less than
an acceptance criterion ɛ. A key advantage of ABC is
that this distance function replaces a formal likelihood
function, allowing inference on black-box or agent-
based models like VarroaPop, which lack a tractable like-
lihood function.
To explore parameter space and propose potential

parameter sets for ABC, we used a sequential Monte
Carlo (SMC) algorithm, also known as particle filtering
(Sisson et al. 2007, Toni et al. 2009, Doucet and Johan-
sen 2011). This algorithm uses Monte Carlo iterations
(called populations), each of which takes the distribution
of particles accepted by ABC in the last population as
the prior distribution from which to sample. With each
successive population, the acceptance criterion ɛ is
decreased, resulting in an increasingly close approxima-
tion of the posterior.
To carry out ABC with SMC sampling (ABC-SMC),

we used the pyABC package version 0.9.2 in Python 3.6
(Klinger et al. 2018), with computation distributed
across 96 cores. We used the sum of absolute deviation
(L1 norm) as the distance function because it may be
more robust to outliers than the commonly used sum of
squared deviations (L2 norm), but performs similarly,
overall (Prangle 2017). We chose to fit our model to the
mean and standard deviation of adult and egg counts
because these two endpoints should provide sufficient
information to estimate all intermediate life stages. Thus,
our distance function compared model predictions and
empirical data for 96 summary statistics (6 treat-
ments × 4 dates × 2 endpoints × 2 statistics). For the
transition function, which converts each set of accepted
particles to the prior for the next population, we chose a
local multivariate Gaussian kernel density estimator
(KDE), using the nearest quarter of neighbors, which
leads to faster convergence than a global KDE (Filippi
et al. 2013). We adjusted ɛ each population to the med-
ian distance of accepted particles in the prior popula-
tion. We ended sampling after 12 populations of 500
accepted particles because computational time had

TABLE 1. List of parameters considered to be random variables and inferred through Approximate Bayesian Computation.

Parameter name in
VarroaPop Description Units Type Lower limit Upper limit

ICAdultLD50 oral LD50 for adults ng/bee prior 0.1 100
ICAdultSlope slope of the adult dose-response curve mortality %/ng prior 1 9
ICLarvaLD50 oral LD50 for larvae ng/bee prior 0.1 100
ICLarvaSlope slope of the larva dose–response curve mortality %/ng prior 1 9
ICForagerLifespan (mean) mean life span of foragers d hyperprior 4 16
ICForagerLifespan (SD) SD of forager life span d hyperprior 0 3
ICQueenStrength (mean) mean queen strength (/ egg laying

rate)
unitless hyperprior 1 5

ICQueenStrength (SD) SD of queen strength (/ egg laying
rate)

unitless hyperprior 0 2
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become prohibitive for such small return, since ɛ
decreased only slightly with each additional generation
and marginal posterior distributions had become stable.

Predicting colony response to clothianidin

We used our fitted model to make predictions by sam-
pling the joint posterior, which involved drawing param-
eters from our final generation of accepted particles,
weighted by their distance from the empirical data, and
evaluating the model using each parameter set to pro-
duce synthetic feeding study data. After 200 samples
from the posterior, resulting in 200 model evaluations,
we calculated the median value for the prediction of
interest, as well as the percentiles corresponding to the
68%, 95%, and 99% prediction intervals (roughly 1, 2,
and 3 standard deviations). These intervals reflect varia-
tion in individual colony strengths, as well as clothiani-
din toxicity parameters, as inferred from the empirical
data. Because we sampled from the joint posterior, all
predictions reflect the covariance structure of the param-
eters.
We used this method to predict the clothianidin adult

and larva oral dose-response curves, and distribution of
egg-laying rates (derived from queen strength) and for-
ager life spans among colonies in the feeding study. We
also predicted colony population structures through
time for each treatment and compared these results to
predictions for the control treatment. We then assessed
whether our model predicted a significant reduction in
the number of adults, pupae, larvae, and eggs at any time
during the study, for each treatment level, as well as sev-
eral untested exposure levels between 50 and 95 µg/kg.
We defined a significant reduction as a period when the
predicted difference from the control was below zero,
within three different levels of confidence using the 68%,
95%, and 99% prediction intervals.

RESULTS

Details of ABC-SMC sampling

We used Approximate Bayesian Computation with
sequential Monte Carlo sampling (ABC-SMC) to infer
posterior probability distributions of key parameters in
our VarroaPop + Pesticide-based statistical model. Sam-
pling occurred over 12 populations, with acceptance
rates that began at 52.3% and decreased to 1.1%
(Fig. 1). The total number of parameter sets (particles)
considered was 144,158, each of which required 82 indi-
vidual runs of VarroaPop + Pesticide, for a total ˜11.8
million model runs. Actual computation time was ˜13 d
using 96 cores. Sampling was stopped after population
(SMC iteration) 12 due to increasingly long computation
times yielding little improvement in the acceptance
threshold ɛ (Fig. 1). At this point in the algorithm, there
were no major shifts in the posterior probability of
parameters between generations (Fig. 2).

Comparison of model predictions to the empirical feeding
study data

To assess whether our VarroaPop + Pesticide-based
model could explain patterns of the feeding study, we
compared our ABC-SMC-parameterized model’s pre-
dicted colony demographics through time to empirical
data. For control treatment colonies, model predictions
matched general temporal trends, which included a rela-
tively stable adult population, sudden declines in pupae
and adults at the final sampling point, and a consistent
decrease in the number of eggs (Fig. 3; also see Appen-
dix S2: Fig. S2). The model also successfully predicted
declines across all population endpoints (counts of each
caste) for the 72 and 140 µg/kg treatments, although it
underpredicted the magnitude of decline at 140 µg/kg
for adults, pupae and larvae. The 95% prediction inter-
vals, which captured variability in parameter values and
individual colony strength, overlapped with the standard
deviation of the field data for adult bees in 21/24 treat-
ments (87.5%) by sampling date combinations, excluding
the initial time points.

Predicted no/lowest observed adverse effect concentration
(NOAEC/LOAEC)

We used our predicted colony size and population
structure trajectories across the clothianidin treatments
to estimate the no observed adverse effect concentration
(NOAEC) and lowest observed adverse effect concentra-
tion (LOAEC) for adult, larvae, pupae and egg end-
points. When comparing all treatment levels present in
the colony feeding study to the control, our model pre-
dicted a NOAEC and LOAEC of 36 and 72 µg/kg,
respectively for the 68% prediction interval, and 72 and
140 µg/kg, respectively, for the 95% and 99% prediction
intervals, on the basis of adverse effects on adults and
brood (Fig. 4, Appendix S2: Fig. S3). According to the
95% prediction interval, colonies in the 140 µg/kg treat-
ment had significant adult bee count reductions vs. the
control for 78.6% of the study period (i.e., 78.6% of the
time the 95% prediction intervals for change in number
bees from the control did not contain zero; Fig. 5, top;
Appendix S1: Table S2). The mean reduction in the
median adult bee count for treatment colonies vs. con-
trol colonies over the study period was 1.8%, 15.2%, and
41.7% for the 36, 72, and 140 µg/kg treatments, respec-
tively. The maximum reduction in the median adult bee
count for treatment colonies vs. control colonies was
5.0%, 31.8%, and 66.5% for the 36, 72, and 140 µg/kg
treatments, respectively (Fig. 5, bottom).
Our parameterized model also allowed us to estimate

a more precise significant effects threshold occurred
than was possible in the colony feeding study, by predict-
ing adverse effects at intermediate treatment levels that
were not included in the feeding study design. We pre-
dicted effects on colonies from exposure to a range of
50–95 µg/kg clothianidin-spiked nectar, using 5 µg/kg
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intervals. We found that a significant negative effect
occurred at 55 µg/kg for the 68% prediction interval,
and at 80 µg/kg for the 95% and 99% prediction interval,
based on adverse effects on the number of adult bees
(Fig. 6), and brood (Appendix S2: Figs. S4, S5, S6).
According to the 95% prediction interval, colonies
exposed to 75 µg/kg clothianidin did not have significant
adult bee count reductions vs. the control, while those
exposed to 80 µg/kg clothianidin had significant adverse

effects for 39.3% of the study period, on average (Fig. 5,
top; Appendix S1: Table S2). The mean reduction in the
median adult bee count for treatment colonies vs. con-
trol colonies over the study period was 8.6% and 24.3%
for the 55 and 80 µg/kg treatments, respectively. The
maximum reduction in the median adult bee count for
treatment colonies vs. control colonies was 15.8% and
40.8% for the 55 and 80 µg/kg treatments, respectively
(Fig. 5, bottom).
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FIG. 1. The acceptance threshold ɛ (blue) and acceptance rate (yellow) of Approximate Bayesian Computation with Sequential
Monte Carlo sampling through 12 populations.

FIG. 2. The posterior probability density of the adult oral LD50 parameter through 12 populations (t) of Approximate Bayesian
Computation with Sequential Monte Carlo sampling.
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Probability distributions of model parameters inferred
from feeding study data

Through ABC-SMC, we inferred the most probable
parameters for our model from empirical feeding study
data. We considered four VarroaPop + Pesticide parame-
ters that characterize pesticide toxicity at the individual
bee level. Adult LD50, the median lethal oral dose for
adults and foragers, had a large impact on our model’s
ability to fit the empirical data and, therefore, had a shar-
ply defined marginal posterior probability distribution

(Appendix S3: Fig. S1). The median adult LD50 was
18.9 ng/bee, with a 95% credible interval (CI) of 10.1–
32.6 ng/bee (Fig. 2). The slope of the adult oral dose-
response curve had a median value of 6.1 (95% CI, 2.2–
8.8). In contrast with adult oral toxicity, larval toxicity did
not show a strong marginal trend. The median larval
LD50 was 29.3 ng/bee, with a 95% CI that covered most of
the possible range (3.5–93.7 ng/bee), and median slope of
the larva dose-response curve was 5.5 (95% CI, 1.4–8.7).
We also inferred population-level parameters that

described the distribution of colony strengths across
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FIG. 3. Predicted number of adults (top) and eggs (bottom) during the feeding study vs. empirical data (orange dots with lines
showing standard deviation). Solid blue lines represent the median prediction and shaded regions denote the 68%, 95%, and 99%
prediction intervals (PI). For pupae and larvae endpoints, see Appendix S2: Fig. S2.
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FIG. 4. Predicted change in number of adults (top) and eggs (bottom) from the control. Empirical feeding study data is repre-
sented by orange dots. Solid blue lines represent the median prediction and shaded regions denote the 68%, 95%, and 99% predic-
tion intervals. For pupae and larvae endpoints, see Appendix S2: Fig. S3.
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colonies in the feeding study (Appendix S3: Fig. S1).
Queen strength, which controls the maximum egg-laying
rate in VarroaPop and varies from 1 to 5, had a mean of
3.3 (95% CI, 1.8–4.7) and a standard deviation of 1.8 (95%
CI, 1.3–2.0). Forager life span, which varies from 4 to 16 d
in VarroaPop, had a mean of 13.5 d (95% CI, 9.5–15.8 d)
and a standard deviation of 1.7 d (95% CI, 0.2–2.9 d).

Model predictions of clothianidin toxicity and colony
strength

We used our parameterized model to infer clothiani-
din dose-response curves that best explain the empirical
feeding study data. The median adult oral dose-response
curve indicated that individual mortality, at a rate of at

 (%
)

 (%
)

 S

FIG. 5. Percentage of the study period that each treatment was predicted to have a significant reduction in adult bee counts,
compared to the control, for three different levels of confidence: 68%, 95%, and 99% prediction intervals (top), and the maximum
and mean reduction in median adult bee counts for each treatment (bottom). The study period is the first day of treatment until the
final colony condition assessment of 2014. Adult bee count was considered significantly reduced (compared to the control) when
the prediction interval of the change did not contain zero. Clothianidin levels 50–70 µg/kg and 75–95 µg/kg were predicted by the
model but were not present in the empirical feeding study.
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December 2021 MODELING PESTICIDE EFFECTS ON HONEY BEES Article e02442; page 11



least 1%, began at 8.9 ng/bee and increased to 99% by
34.8 ng/bee (Fig. 7, left). Accounting for uncertainty in
the adult LD50 and slope parameters, 95% of dose-
response curves exhibited at least 1% mortality at a dose
of <18.3 ng/bee and reached at least 80% mortality by
45.5 ng/bee. The larva oral dose-response curve was
more variable due to greater uncertainty in the larva
LD50 and slope parameters (Fig. 7, right). The median
larva curve exhibited a mortality rate of at least 1% at
12.8 ng/bee and reached 99% at 67.3 ng/bee. Consider-
ing the variability in larva dose-response curves, 95% of
curves showed at least 1% mortality at a dose of
<48.4 ng/bee and at least 52.6% mortality at 100 ng/bee.
We also inferred distributions of queen egg-laying

rates and forager life span among individual colonies, by
sampling from the posteriors of the population-level
means and standard deviations. Queen egg-laying rates
varied widely from 1,000 to 3,000 eggs/d, but most fell
between 1,750 and 2,500 eggs/d (Appendix S1: Fig. S1:
left). In contrast, the distribution of forager life span
among colonies was concentrated at the high end of the
range, between 12 and 15 d (Appendix S2: Fig. S1:
right).

DISCUSSION

Our study demonstrates that the VarroaPop colony
simulation model can be successfully fit to empirical
field data from colony-level toxicity studies, providing
novel inference on in-hive dynamics. Because field-based
colony-level studies are logistically and financially
expensive, models like VarroaPop are a promising
method for gaining additional information on colony-
level effects using input parameters from laboratory tox-
icity testing. Furthermore, colony simulation models can
help separate effects of pesticides from factors like
weather, temporal shifts in demography (e.g., population
growth/reduction and change in structure), and colony-
to-colony variation in queen egg-laying rate. Our

analysis of the clothianidin feeding study data suggests
that acute oral toxicity to adult workers and foragers is
sufficient to explain the majority of colony declines
observed at 72 and 140 µg/kg, although additional
mechanisms appeared to prevent population recovery at
140 µg/kg.

Simulating honey bee colony population trends and
structure with VarroaPop

The VarroaPop model, when parameterized to the
feeding study data using ABC, was able to predict over-
all trends in colony population through time as well as
general caste structure, supporting our hypothesis that
the model could reproduce general trends in the data.
Trends in control data that were predicted included an
initial increase in the number of adult bees; a decline in
the number of adults, pupae and larvae at the last time
point; and a consistently decreasing number of eggs.
Although VarroaPop fit overall data trends, there was a
consistent deviation from empirical results. VarroaPop
predicted an initial spike and recovery in the predicted
adult and pupa populations, causing them to peak sev-
eral weeks earlier than in the feeding study. This lagged
response error is likely caused by initialization behavior
of the VarroaPop model, which distributes all bees
within each caste evenly, across all ages. In the feeding
study, colony size was increasing at the beginning of the
study period and it is likely that most bees were at the
young end of their age ranges, leading to a later demo-
graphic peak as a function of pupae and adult develop-
ment in the empirical data relative to the model (Page
and Peng 2001). This behavior may be alleviated by
allowing uneven distributions of bees across age ranges,
or by obtaining data for a sufficiently long pre-treatment
period that allows the model to equilibrate to a natural
age distribution based on egg-laying-rate.
The VarroaPop model also fit the general caste struc-

ture of the colonies in the feeding study. Both the
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FIG. 7. Our model’s predicted adult (left) and larva (right) dose–response curves, given the empirical feeding study data. Solid
blue lines represent the median prediction and shaded regions denote the 68%, 95%, and 99% prediction intervals.
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empirical data and model predictions had a ratio of
non-forager adults :pupae : larvae around 2:2:1 for con-
trol colonies at all time points, except the final one.
Interestingly, this ratio of non-forager adults is 35–75%
lower than the range predicted by a steady-state model
bee population using mortality rates from the literature
(Torres et al. 2015). To fit this low number of adult bees,
we reduced the VarroaPop pupa-to-adult transition sur-
vival rate to 60% from the default 100%. Lower adult
bee population, relative to pupae and larvae, was likely
caused by background mortality from sources other
than clothianidin exposure.
One potential source of background mortality is infec-

tion by a honey bee pathogen (e.g., chalkbrood, foul-
brood, or sacbrood virus) that may kill bees at the pupal
stage (Aronstein and Murray 2010, Evans and Schwarz
2011), resulting in capped cells that may be counted in a
census but fail to produce adults. While the authors of the
colony feeding study did not observe these diseases
(Louque 2016), they cannot be ruled out because colonies
were not treated for any pathogens except Varroa mites.
The authors did observe and quantify Nosema infection
across all treatment colonies, however, and this pathogen
causes reduced adult life span (Martı́n-Hernández et al.
2011). Additionally, despite treatment for Varroa mites,
Varroa presence was observed in study colonies, albeit at
levels below the typical treatment threshold of >3 mites
per 100 bees (0.71–2.40 mites per 100 bees in August
2014; Genersch et al. 2010, Honey Bee Health Coalition
2018). Mortality due to pathogen infection, in combina-
tion with Varroa pressure, may have contributed to poor
overwintering success following the exposure period,
which was noted in all treatments, including the control
(Higes et al. 2008, Barron 2015).

Using VarroaPop to explain the effect of clothianidin on
colony endpoints

The VarroaPop model predicted declines in each
colony-level endpoint for the 72 and 140 µg/kg clothiani-
din treatments, with magnitudes similar to those in the
feeding study. The model also predicted a subsequent
recovery in the number of adults and pupae for these
treatments to levels similar to the control colonies by the
final colony condition assessment (11 weeks after expo-
sure ended). This period of recovery in colony strength
was not observed in the empirical data, where these
colonies continued to decline through the end of the
study period. Colonies in the feeding study also exhib-
ited significant (relative to the control), but transient,
adverse effects at 36 µg/kg for two of the four endpoints
considered (adults and pupae), but our model did not
predict this. Taken together, our results do not support
our hypothesis that ingestion-based toxicity is sufficient
to explain colony declines in the clothianidin feeding
study. Our model, which considered only acute oral toxi-
city, explained most of the negative effects seen in the
empirical data and estimated a significant effect

threshold of 80 µg/kg for all endpoints at 95% confi-
dence, close to the empirical LOAEC of 72 µg/kg for
eggs and larvae and within a factor of 3 of the empirical
LOAEC of 36 µg/kg for adults and pupae. However,
additional mechanisms may have contributed to declines
at lower exposure levels (36 µg/kg) and lack of recovery
at higher exposure levels (140 µg/kg).
Our model may have underestimated effects of 36 µg/

kg clothianidin spiked nectar because it did not consider
chronic, sublethal effects. Based on our estimated nectar
consumption values (USEPA et al. 2014), 36 µg/kg
translates to a daily exposure of 11.4%–26.7% of the
inferred median LD50 (18.9 ng/bee) for adult workers,
with some variation due to age. There is a growing
understanding that prolonged exposure to neonicotinoid
insecticides at concentrations below lethal doses can
cause adverse effects in individual bees that could ulti-
mately affect colony performance (Godfray et al. 2015).
Sublethal exposure appears to inhibit immune response
(Brandt et al. 2016) and may lead to greater susceptibil-
ity to pathogens (Di Prisco et al. 2013, Doublet et al.
2015) including Nosema (Alaux et al. 2010), a unicellu-
lar parasite observed across all treatments in the feeding
study. Sublethal doses can also increase susceptibility to
pathogens by inhibiting grooming and hygienic behav-
iors (Wu-Smart and Spivak 2016, Morfin et al. 2019a,b).
In addition, sublethal doses may reduce foraging success
(Yang et al. 2008) by inhibiting learning and memory
(Decourtye et al. 2004, Williamson and Wright 2013,
Tison et al. 2019, Morfin et al. 2020), navigation (Fis-
cher et al. 2014, Stanley et al. 2015), and locomotor
function (Williamson et al. 2014, Tosi et al. 2018).
Future modeling efforts could include these sublethal
effects pathways, in combination with Varroa mite pres-
sure, to test whether addition of these mechanisms
allows better prediction of transient colony declines at
lower pesticide exposure levels. The model inference
techniques applied here could be applied in combination
with field data spanning a range of low exposure levels
to guide development of these sublethal effects pathways
within VarroaPop.
Sublethal effects may also explain the lack of recovery

of the 72 and 140 µg/kg-exposed colonies observed in
the feeding study, but not predicted by our model.
Although these effects may disappear by 11 weeks after
exposure, increased colony disease burden (from
decreased immunity) and decreased food stores (from
altered foraging behavior) could lead to colony failures
in the fall or winter (Higes et al. 2008, Naug 2009,
vanEngelsdorp et al. 2009). Interestingly, colonies in the
feeding study had a low number of workers, relative
to pupae, across all treatments and time points. This
low worker population, combined with clothianidin
ingestion-induced mortality and possible sublethal
effects at 72 and 140 µg/kg, may have pushed colonies
into failure. The VarroaPop model could better fit these
scenarios by simulating pathogens in addition to Varroa
mites; by including pesticide effects on immunity; and

December 2021 MODELING PESTICIDE EFFECTS ON HONEY BEES Article e02442; page 13



by adding feedback pathways critical to colony success
such as thermoregulation, brood-rearing, and hive
defense capacity (Winston 1987, Stabentheiner et al.
2010, Barron 2015).

Using a colony dynamics model to assess pesticide risk to
bees

Fitting a honey bee colony dynamics model to field-
based experimental data allowed us to gain additional
insights that could be leveraged as part of the risk assess-
ment process used by regulatory agencies. Two key find-
ings relative to the empirical colony feeding study were
that some colony endpoints decline at lower exposure
levels than our model predicted, and actual recovery of
colony endpoints at the highest exposure level was less
than our model predicted. As discussed above, these
findings point to effects beyond oral toxicity-induced
mortality, suggesting that pathogen pressures and envi-
ronmental variability also play important roles in
colony-level honey bee population dynamics.
We were also able to infer dose-response relationships

from the empirical data, endpoints that are typically dif-
ficult to estimate in whole-colony studies without a pre-
dictive model that simulates internal colony processes.
Our parameterized Bayesian model indicated that the
median oral LD50 for adult bees in the feeding study was
18.9 ng/bee, which falls just above the range observed in
laboratory acute oral toxicity studies on individual bees,
2.6–15.7 ng/bee (Laurino et al. 2011, USEPA 2017), and
the 95% confidence interval of one of the two registrant-
submitted studies, 13.5–18.1 ng/bee (USEPA 2017).
Interestingly, this suggests that Tier 1 individual bee tox-
icity experiments with clothianidin could be informative
for adult oral toxicity in ecologically relevant scenarios,
despite their inherent simplicity. In contrast, our analysis
of the feeding study data provided little insight into the
larval oral LD50, as evidenced by the broad probability
distribution for this parameter, which did not improve as
ABC-SMC progressed, and there are no other studies
that directly assessed acute larval toxicity (USEPA
2017). This highlights one drawback to highly parame-
terized inference methods: a data set can lack sufficient
information to describe all parameters in a model (Luo
et al. 2009). This issue of non-identifiability can occur
when parameters have functional interrelationships (cor-
relation) (Li and Vu 2013), as in the case of larval and
adult toxicity, where larval mortality leads to fewer
adults and adult mortality leads to fewer larvae through
reduced queen egg-laying rate. In fact, the feedback of
adult mortality on number of larvae may be responsible
for the consistent and significant adverse effects pre-
dicted for larvae at high exposure levels despite the wide
range of possible larval LD50 values. We calculated fit to
the empirical data based on the number of adults and
eggs, but not larvae and pupae, however, and including
these latter two endpoints in future analyses may allow
better inference on larval toxicity.

We also leveraged our model to predict a more precise
threshold dose where statistically significant negative
effects on colonies would have occurred, by fitting toxic-
ity parameters from the concentrations tested in the
feeding study, then predicting untested concentrations
between 50 and 95 µg/kg. This method is more rigorous
than simply interpolating responses between tested con-
centrations because it can account for uncertainty and
non-linear effects or tipping points, and it allows for
consideration of statistical significance. The threshold
for determining a significant adverse effect, based on
prediction intervals, can be adjusted based on the
desired level of confidence and a consideration of bio-
logical risk. If the 95% prediction interval for reduction
in bee count from the control does not contain zero, at
least 95% of colonies are predicted to be adversely
affected, taking into account between-colony variance
and uncertainty in colony health and substance toxicity.
Using the more conservative 68% prediction interval, we
estimated a significant effect threshold of 55 µg/kg,
based on adverse effects across all endpoints. The 95%
and 99% prediction intervals resulted in a significant
effect threshold of 80 µg/kg. By comparison, a statistical
analysis of the feeding study data found a NOAEC and
LOAEC of 19 and 36 µg/kg, respectively, for adults and
pupae, and 36 and 72 µg/kg for eggs and larvae (Louque
2016). It is important to consider that our model-
derived significance effect threshold describes the lowest
concentration at which ingestion-induced mortality is
expected to begin significantly impacting colony-level
endpoints but does not include other types of effects
such as non-lethal effects or contact exposure that may
be better represented by the empirically derived end-
points. Despite this caveat, our analysis shows how col-
ony dynamics models can estimate outcomes at exposure
levels that could not be tested due to logistical or finan-
cial constraints.

CONCLUSION

We challenged the VarroaPop + Pesticide bee colony
dynamics model to simulate a publicly available
registrant-submitted data set from a colony feeding
study in which colonies were exposed to pesticide-spiked
nectar at six concentrations, and population-level effects
were tracked over several months. We successfully fit the
model to these data using Approximate Bayesian Com-
putation with Sequential Monte Carlo, and inferred
parameter distributions that best describe the dose-
response relationships and other key colony characteris-
tics. While the model fit well at intermediate exposure
levels, it underestimated adverse effects at low exposure
(36 µg/kg) and overestimated colony recovery at the
highest exposure (140 µg/kg), for the adult and pupa
endpoints, which suggests that additional mechanisms
beside oral toxicity-induced mortality may have con-
tributed to colony declines. Our results demonstrate that
honey bee colony models, combined with Bayesian
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model inference, can investigate hypotheses about
individual-level responses to pesticides from ecologically
relevant colony-level data. These parameterized models
can also predict how colonies will respond to hypotheti-
cal scenarios such as untested concentrations, changes in
weather or additional stressors. Our findings suggest
that applied colony dynamics models are a promising
tool for inference in support of higher-tier pesticide risk
assessments.
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